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10.1 INTRODUCTION

How parents influence the fitness of offspring has generated a large body of
empirical and theoretical literature. The importance of parental care in
determining reproductive success in bats has received less attention compared
with other aspects of reproduction. Efforts to integrate research on mother—infant
recognition, lactation, non-nutritional care and postnatal growth have largely been
descriptive. In this chapter we review the available literature on parental care and
postnatal growth in bats and invite others to further investigate how these traits
vary among species and how parental effort can be adjusted to the variation in costs
and benefits to both parents and offspring. We follow Clutton-Brock (1991) in
defining parental care as ‘any form of parental behavior that appears likely to
increase the fitness of parents and offspring.’
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Interspecific and intraspecific variation in parental care in mammals can largely
be linked to differences in the amount of energy and nutrients allocated to offspring
in the form of milk, but non-nutritional care also may influence this variation.
These differences may be associated with several factors, including phylogeny,
diet, offspring gender, litter size, climate, habitat and risk of predation. Depending
on the relative availability of food, environmental changes may increase or reduce
efforts of parental expenditure in offspring (Clutton-Brock, 1991). In this review we
examine patterns of parental effort in bats and summarize factors that appear to
influence patterns of postnatal growth in the Chiroptera in an effort to determine
how parents contribute to the development of their young.

10.2 PARENTAL CARE

In bats, as in most other mammals, mothers provide a continuum of protection to
their offspring from gestation to weaning. In the foetal period, the mother’s womb
protects the foetus from many environmental stimuli and strongly affects the
biochemical and thermal environment in which the offspring develops. After birth,
the mother’s direct biochemical influences are limited to the milk that she supplies.
In addition, non-nutritional care may be provided and can include sensory
stimulation, thermal influence, and pup retrieval and transport.

Maternal interactions with a developing infant can be divided into two major
phases. The first phase of interactions occurs during pregnancy when hormones
and antibodies regulate placental nutrients, oxygen and waste exchange with the
foetus. The second phase occurs when the mother influences the newborn through
major sensory systems (tactile, olfactory, thermal, auditory and visual) and the
biochemical transfer of nutrients and energy in the form of milk. Combinations of
these interactions are evident during the developmental period and are manifested
by unique characteristics and the quality of parental care exhibited by each species.

Few studies have focused directly on parental care in free-ranging bats. Notable
exceptions include studies by Nelson (1965), Bradbury and Vehrencamp (1977a,b),
Thomson et al. (1985), McCracken and Gustin (1991), and Wilkinson (1985, 1992a).
In this chapter we review various parent—infant interactions including nutritional
and non-nutritional forms of care. We discuss nutritional investment that mothers
make in young bats, largely in the context of milk production and yield. In
addition, we describe mammary form and function in bats, suckling behavior,
regurgitation (a special case of maternal care in Desmodus), and the incidence of
spontaneous secretion of milk by males. Acoustic communication and its role in
mother—pup recognition and reunions has received moderate attention, but few
studies have investigated the role of spatial, olfactory, visual and tactile cues in
these contexts.

Most newborn bats are functionally altricial at birth; they are naked and have a
limited ability to regulate their body temperature. An important aspect of parental
care in bats is the selection and maintenance of a thermal environment by the
mother that facilitates rapid growth and development of young. Acoustic and
olfactory responses are important for promoting mother-infant recognition, tactile
interactions are important for the development of appropriate social and locomotor
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functions, and suckling behavior is obviously essential for the transfer of milk.
Alloparental behavior, when it occurs, may facilitate the development of parenting
skills, cohesion of groups, and socialization (McKenna, 1981; Kunz et al., 1994a).
Retrieval of a pup that has fallen from its roost is a relatively common occurrence
in bats, and because this behavior also involves transporting young in flight,
maternal effort may be high in some species because most young bats are unable to
fly until they reach 90 per cent of adult wing dimensions (Kunz, 1987; Barclay,
1995). For species that regularly carry their young during foraging bouts, or
transport them to alternate roosts, the increased energetic costs of flight associated
with this behavior may be substantial.

In most species of mammals, including bats, the primary care-givers are females.
However, in some species, males assume a more active role. For example, paternal
care may involve the construction and/or defense of roosts or the defense of female
groups (see McCracken and Wilkinson, this volume). Recent evidence suggests that
males of at least one species (Dyacopterus spadecius) maintains active mammary
tissue at certain times of year (Francis et al., 1994). This finding suggests that
nutritional care by males may be possible, but there is no current evidence that
pups are suckled by these males.

10.2.1 Sensory interactions and Mother-Infant Recognition

Bats that roost in large aggregations appear to rely on a combination of spatial
memory, acoustic, olfactory, tactile and/or visual cues to identify young or to
communicate with conspecifics. Early observations on bats suggest that females
which form large aggregations suckled young indiscriminately (Tadarida
brasiliensis, Davis et al., 1962; Miniopterus australis and M. schreibersii, Brosset,
1962b). However, more recent studies on these and other species have shown that
nearly all female bats selectively suckle their own infants (Antrozous pallidus,
Brown, 1976; Desmodus rotundus, Schmidt, 1972; Eptesicus fuscus, Davis et al.,
1968; Myotis velifer, Kunz, 1973; Pipistrellus pipistrellus, Bishop et al., 1992;
Corynorhinus rafinesquei, Pearson et al., 1952; Rhinolophus condylura, Kulzer,
1962; but see Nycticeius humeralis, Wilkinson, 1992a, and Tadarida brasiliensis,
McCracken, 1984). Selective nursing requires individual recognition, which
ultimately is based on some form of communication.

Although most animals rely on one form of communication over others (Scott,
1968), female bats may use several cues to locate and identify their dependent
young. Females of some species initially rely on spatial memory for locating their
pups, but subsequently use audition and olfactory cues for individual recognition
(Gustin and McCracken, 1987). In these and similar situations, pups are accepted
and allowed to suckle if recognized (De Fanis and Jones, 1995b).

Mother-offspring interactions may occur well past the onset of weaning in some
species (Bradbury, 1977a). Although we are unaware of any experimental evidence
to support this claim, recognition of weaned young appears to occur in Desmodus
rotundus (Wilkinson, 1988), Myotis adversus (Dwyer, 1970), Pteropus vampyrus,
and P. hypomelanus (W.R. Hood, personal observation). For species of bats that are
relatively long-lived (Austed and Fischer, 1991) and highly philopatric (Lewis,
1995), we would expect roost mates to develop some form of individual
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recognition. The best candidates for long-term recognition include species that
form small female groups based on matrilineal relationships. These and similar
associations suggest that recognition cues are either committed to long-term
memory or are genetically based on sensory cues similar to their own—so-called
phenotypic matching (Beecher, 1982). Recognition of young by fathers has not been
demonstrated in bats, although we would expect paternal recognition to occur in
monogamous species, where males participate in the care of young (e.g., Lavia
frons, Vaughan and Vaughan, 1987; Cardioderma cor, Vaughan, 1976; and
Vampyrum spectrum, Vehrencamp et al., 1977) and where kin recognition serves
as a mechanism to avoid inbreeding (Krebs and Davies, 1991).

Spatial memory

Spatial memory appears to be the principal sensory cue used by females for roost
recognition (Bradbury, 1977a; Mueller and Mueller, 1979). Spatial perception and
memory may be important for species that leave their young in different roost
locations at night, especially in those species that roost in large aggregations
(Bradbury, 1977a; Mueller and Mueller, 1979). In Tadarida brasiliensis, lactating
females associate with pups during scheduled nursing bouts, but they typically
aggregate with other adults when they are not nursing their young. In an
experiment to test for spatial memory in T. brasiliensis, McCracken (1993) marked
females and removed their pups from known roosting areas in a maternity cave
housing approximately seven million adults. Females returned to these roosting
areas within the cave two or three times each night, and searched for their young
which had been temporarily removed from the cave. Results from this experiment
provided support for the spatial-memory hypothesis, because visual, olfactory, and
acoustic stimuli were absent. Use of spatial memory for locating young also has
been suggested for Lasiurus cinereus (Koehler and Barclay, 1988) and Hipposideros
speoris (Habersetzer and Marimuthu, 1986).

Acoustic stimuli

Acoustic communication between females and their young is continually refined
from birth until weaning, especially as the neonatal laryngo-nasal junction
develops (Matsumura, 1979), hearing is established in young (Brown et al., 1978),
and pups learn adult vocalizations and echolocation calls (e.g., Matsumura, 1981;
Jones et al., 1992, Jones et al., 1993; Masters et al., 1995; Moss et al., 1997). Young
bats of several species are able to utter sharp, metallic ‘chirps’ or ‘squeaks’ during
(Nyctalus noctula, Kleiman, 1969) or within hours of birth {Corynorhinus
rafinesquei, Pearson et al., 1952). Tadarida brasiliensis pups and their mothers
vocalize almost continuously following parturition, presumably allowing each to
learn the vocalizations of the other (Gelfand and McCracken, 1986). These single-
and double-note vocalizations are termed ‘isolation calls’ (Gould, 1971: Schmidt,
1972; Brown, 1976). Newborn Antrozous pallidus emit an almost continuous series
of isolation calls if separated from their mother (Brown, 1976). Similarly, pups of
Eptesicus fuscus less than two weeks of age squeak continuously until they are
retrieved following a fall to the floor (Davis et al., 1968).

The segmented nature of isolation calls appears to help mothers locate their
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young at least in captive situations (Davis, 1970). Isolation calls of Tadarida
brasiliensis pups were distinguished by their mothers (60.4% classified correctly)
in experimental trials, suggesting that similar recognition occurs in free-ranging
populations (Gelfand and McCracken, 1986). In several species, pups produce
individually distinctive calls that appear to attract mothers when they become
separated (e.g., Phyllostomus hastatus, Rother and Schmidt, 1985; T. brasiliensis,
Gelfand and McCracken, 1986; Pipistrellus pipistrellus, Jones et al., 1991;
Nycticeius humeralis, Scherrer and Wilkinson, 1993; Plecotus auritus, De Fanis
and Jones, 1995a).

Directive calls (i.e., attractive calls, Matsumura, 1981) are often emitted by
mothers as they search for their young. They can be distinguished by pups at
distances up to one meter in extremely dense clusters of T, brasiliensis (Balcombe
and McCracken, 1992). These directive calls are stereotyped and statistically
discernible among individuals (Balcombe and McCracken, 1992), a characteristic
considered to be highly suitable for effective communication.

Vocal communication is also likely to be important when pups first become
volant. A young Saccopteryx leptura was observed making short sallies from its
roost during the day, and after a short period the mother emitted several
vocalizations, stimulating her pup to return to the roost (Bradbury and Emmons,
1974). As the pup approached its mother and climbed upon her, both mother and
pup emitted audible vocalizations, presumably verifying their identities. O’Shea
and Vaughan (1977) reported ‘rallying’ calls in Antrozous pallidus, which
presumably promotes contact between mother and pups upon return of the mother
to the roost.

Vocal communication between mothers and pups appears to be most complex
early in the postnatal period. Infant bats which become separated from their
mothers emit continuous broad-band attractive calls, and mothers respond with
‘lead signals’ (i.e., directive calls, Brown, 1976; antiphonal calls, Matsumura and
Uchida, 1975; and search calls, Nelson, 1964). During the production of mutual,
alternating signaling in Rhinolophus ferrumequinum, the acoustic character and
pattern of infant vocalizations gradually changes until the high-intensity call
precisely overlaps the call of its mother. Contact calls emitted by both mother and
infant also appear to establish identity and facilitate mother—pup reunions in
Pteropus (Nelson, 1965), Eptesicus fuscus (Gould, 1971), Desmodus rotundus
(Schmidt, 1972), Antrozous pallidus {Vaughan and O’Shea, 1976), and R.
ferrumequinum (Matsumura, 1981).

Acoustic recognition of offspring by mothers, and mothers by pups, has been
verified experimentally in Myotis lucifugus and Tadarida brasiliensis. Turner et al.
(1972) placed Myotis pups individually in a Y-maze and allowed a choice between
its mother and another lactating female, and pups selected their own mothers in
75% of the tests. Despite the high error rate and overlap in duration of isolation
calls of different infants, vocal cues may aid a mother in locating her own infant in
a large maternity colony, with final recognition based on other cues such as
olfaction, as in Rousettus aegyptiacus (Kulzer, 1961) and Tadarida brasiliensis
(Gustin and McCracken, 1987). Balcombe (1990) evaluated call recognition by
lactating female T. brasiliensis, and when they were presented with calls of their
pup and an unrelated pup, the mothers showed a significant preference for calls
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from their own young. Similar observations were reported for P, pipistrellus (De
Fanis and Jones, 1996).

In some species, isolation calls appear to have both genetic and learned
components. Acoustic learning appears to be important in the development of
isolation calls in Phyllostomus discolor (Esser and Schmidt, 1989). Mothers
produce directive calls that are unique, especially in their patterns of frequency
modulation. Isolation calls of pups gradually change to resemble the directive calls
of their mothers, as mothers and pups exchange isolation and directive calls. In a
series of experiments, Esser (1994) demonstrated that when pups of P. discolor
were isolated from conspecifics at birth and hand reared, individuals that were
subjected to playback calls of their mothers subsequently produced calls with more
frequency minima and maxima than control pups which received no-acoustic
stimulation. Scherrer and Wilkinson (1993) argued that the isolation calls of
Nycticeius humeralis had a strong genetic component, because pups were unable
to learn isolation calls from mothers who did not emit equivalent sounds. However,
both young and adult members of social groups in P. hastatus appear to learn calls
that help coordinate foraging movements of other members in the same social
group (Boughman, 1998).

Echolocation calls may be used by some species for individual recognition, but
these are probably less important in mother—pup interactions. Individual variation
in FM calls has been described for several species of bats, including Eptesicus
fuscus (Schnitzler et al., 1987; Thomas et al., 1987; Brigham ef al., 1989; Masters
et al., 1991, 1995; Fenton, 1994; Obrist, 1995; but see Rasmuson and Barclay, 1992)
and Myotis lucifugus (Thomson et al., 1985). Echolocation calls produced by adult
E. fuscus were highly repeatable (>70%}), compared to young (12 to 80%) but self-
consistency increased with age (Masters et al., 1995). In Pipistrellus pipistrellus,
echolocation calls of pups were correctly discriminated in 82% of the trials by six-
day old infants and by 91% in 15-day old infants (Jones et al., 1991). Scherrer and
Wilkinson (1993) found a high degree of repeatability in the calls of young
Nycticeius humeralis (44 to 94%). Significant variation in echolocation calls exists
among family members (38%) in E. fuscus, suggesting a genetlc basis to vocal
signatures (Masters et al., 1995).

The characteristics of echolocation calls of young bats also appear to change with
age, where the frequencies of young bats are typically lower than older individuals
(Rhinolophus hipposideros, Jones et al., 1992; R. ferrumequinum, Jones and
Ransome, 1993; Asellia tridens, Jones et al., 1993; Myotis daubenionii, Jones and
Kokurewicz, 1994; and M. lucifugus, Pearl and Fenton, 1996; Moss et al., 1997).
Jones and Ransome (1993) demonstrated that the resting frequencies (RF) emitted
by young R. ferrumequinum are highly correlated with the RF calls of their mothers
— older females raise young with lower RFs that do younger females. Thus, age-
related changes in echolocation calls of bats appear to have both genetic and
learned components (Jones and Ransome, 1993; Masters et al., 1995).

Females of Hipposideros speoris respond to the early FM calls of infants, but
apparently are unable to recognize individuals. Because calls of pups are dynamic,
females apparently are unable to rely on a single acoustic cue for pup recognition.
Alternatively, females may resort to other forms of communication (Jones et al.,
1991), or may respond to a changing template of their offspring’s vocal signature.
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Individual isolation calls may be more ambiguous, and individual recognition may
be less important in solitary species (Koehler and Barclay, 1988).

Olfactory stimuli

Several investigators have suggested that female bats recognize their own young
using olfaction, although few studies have been conducted to test this hypothesis.
The presence of odoriferous glands in females and their young, observations of
maternal or mutual sniffing and apparent scent marking have been reported for
several species. Females of Nycticeius humeralis possess a submandibular gland that
increases in size by nearly 25% within three days of parturition. Immediately before
departing to forage, females apparently used this gland to mark the face of young
bats less than or equal to two weeks of age (Watkins and Shump, 1981). Females of
Pteropus giganteus have specialized glands in the tarsal, oral angle, muzzle and
perineal regions. Mothers may groom their infants in these regions, a behavior which
may be important for sharing odors and for establishing mother—infant bonds
(Jayaprakash and Alexander, 1993). Specialized skin glands become hypertrophied
during lactation in Megaderma Iyra (Begum and Alexander, 1993), and females of
Tadarida brasiliensis actively produce odoriferous secretions from their muzzle and
touch their chins to their own pup several times when selecting them and while
nursing (Gustin and McCracken, 1987). Odor profiles of subaxial secretions from
individual Noctilio leporinus are unique (Brooke, 1994), but the role of these
secretions in mother—pup recognition has not been determined.

Female bats of several species may initially locate their infants using auditory
cues, but final recognition appears to be based on olfaction. Young of Nycticeius
humeralis produce audible vocalizations when females return to their roost after
foraging, but females apparently do not recognize their infants until olfactory cues
are tested by sniffing the facial region of putative offspring (Watkins and Shump,
1981). This behavior has also been observed in Plecotus auritus, although whether
the female sniffed a specific region is unclear (De Fanis and Jones, 1995a). When
females of Pipistrellus pipistrellus return to their roost, they move through the
cluster of young bats, moving their heads, apparently sniffing for their young
(Rakhmatulina, 1972). De Fanis and Jones (1995b) demonstrated that adult females
of P. pipistrellus were able to discriminate between the odors of females from their
own and different colonies. Individual recognition was also apparent, but females
needed more time to recognize odors of individuals from their own colony than
females from different colonies. Upon their return from foraging, females of
Pteropus poliocephalus typically circle the camp where young pups are roosting,
exchange calls with these infants, and finally land near their own young. Females
sniff the chest of pups and either accept their own by opening one or both wings,
or reject the pup by pushing it away using their thumb and wing (Nelson, 1965).
Although olfaction is extremely acute in Desmodus rotundus (Schmidt, 1973), no
studies have examined the role of odors in individual recognition (Wilkinson,
1985),

Only one study has unambiguously demonstrated that mothers recognize their
own young using olfaction. Gustin and McCracken (1987) designed a double-blind
test where lactating females of Tadarida brasiliensis were allowed to choose between
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the odor of their offspring and that of a randomly chosen, conspecific pup. Females
showed a preference for the odor of their pup over that of a randomly chosen pup,
and showed a significant preference for their own muzzle odor over that of arandomly
chosen female. These observations suggest that females may use olfaction for
phenotypic matching in pup recognition. Newborn pups, one to three days old,
showed a preference for the scent of their mothers over a randomly chosen female,
but this form of recognition was apparently abandoned by day four (Loughry and
McCracken, 1991). Although T. brasiliensis pups recognized the auditory directive
calls of females (Balcombe and McCracken, 1992), pups apparently shifted from
olfactory to auditory modes once the auditory system began to mature.

Several studies have shown that olfactory recognition is important in insectivorous
bats, although we expect that olfactory recognition is even stronger in frugivorous,
omnivorous and sanguivorous species. Olfactory bulbs of bats with the latter food
habits are more highly developed than those of insectivorous species (Mann, 1960;
Stephan and Pirlot, 1970). The vomeronasal organ, an important site for olfactory
and gustatory sensation, is rudimentary in many bats but is well developed in
phyllostomids, a family which consists largely of frugivorous and nectarivorous
species (Bhatnagar, 1980). Although highly developed olfaction undoubtedly
contributes to the location of food, the assumption that olfaction should play an
important role in individual recognition is reasonable for these and related taxa, as
has been suggested for frugivorous megachiropterans such as Rousettus aegyptiacus
and Pteropus spp. (Kulzer, 1958; Nelson, 1965).

Visual stimuli

Virtually nothing has been published on the interactions of mothers and pups
based on visual stimuli. Most reports of visual communication involve interactions
between conspecific roost mates associated with group formation, courtship, and
mating displays. Considering the relatively well-developed visual system of bats
(Suthers, 1970), we would expect mothers and pups to communicate visually
whenever possible. Some species, especially foliage-roosting pteropodids and
phyllostomids and some emballonurids, exhibit a rich array of visual displays,
often produced independently of vocal and auditory signals. These include
postural changes, wing flicking, wing shaking, hovering flight, baring of teeth,
‘boxing,” head jerking, and erection of specialized hair patches (Fenton, 1985).
Responses of bats to visual signals may be accompanied or followed by vocal or
olfactory signals, but interpretation of visual signals can be ambiguous. For
example, if a threat posture is accompanied by an audible vocalization or release
of an odoriferous compound, response of the recipient may be to the combination
of signals, not only to one. In this manner each signal may reinforce the other,
leading to an appropriate response by the recipient. Given the apparent occurrence
of visual signaling among adult bats, it seems likely that mothers and pups should
also rely on visual stimuli for recognition. ’

Tuactile stimuli and grooming

Some types of tactile stimulation provided by the mother may be important for
stimulating urination and defecation in bat pups, as reported for other mammals
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(see Hofer, 1981). Repeated tactile stimulation also may reduce the level of
behavioral reactivity as has been observed in some terrestrial mammals (Matthews,
1969; Gubernick and Klopfer, 1981). In highly gregarious species of bats, there is
often a high level of tactile stimulation among roost mates. To what extent such
tactile stimulation is directed toward specific roost mates, including infants, or is
simply a consequence of contact clustering remains to be clarified. In maternity
colonies of Myotis lucifugus and Pipistrellus subflavus, adult females groom their
young before departing on evening foraging bouts and again upon return from
feeding (Burnett and August, 1981; Winchell and Kunz, 1996). Whether this type
of tactile stimulation facilitates gut and bladder emptying of pups, reduces
metabolic rates, or lowers parasite loads invites further study. Contact clustering
does reduce metabolic rates in some young and adult bats (M. thysanodes,
O’Farrell and Studier, 1973: Tadarida brasiliensis, Herreid, 1967; Antrozous
pallidus, Trune and Slobotchikoff, 1976; M. lucifugus, Kurta et al., 1987), but
whether this physiological response is a consequence - of reduced behavioral
anxiety or reflects other factors remains to be established.

10.2.2 Lactaﬁon, Milk and Related Nutritional Effort

Mammals are unique in their ability to produce milk from specialized mammary
glands. Production of milk is generally considered the most costly aspect of
mammalian reproduction (Millar, 1977; Oftedal, 1985; Gittleman and Oftedal,
1987), and likely has the most important influence on reproductive success
(Maynard Smith, 1977; Pond, 1977; Daly, 1979). Milk composition and output are
generally more closely correlated with suckling behavior and diet than with
phylogeny (Ben Shaul, 1962). Energetic requirements of lactation scale negatively
with increasing body size, and thus lactation is most costly in small mammals
(Hanwell and Peaker, 1977; Oftedal, 1985). Since bats are a diverse group, with a
wide range of life histories, dietary specializations, and body sizes (Kunz, 1982;
Hill and Smith, 1984; Kunz and Pierson, 1994), interspecific comparisons among
the Chiroptera should provide additional insight into how these variables
influence parental effort.

Mammary glands, nipples and false nipples

Mammary glands of lactating females can usually be recognized by the whitish
tissue that lies directly beneath the skin (Racey, 1988; Kunz et al., 1996). These
glands are typically flattened, disk-shaped structures that extend from the mid-
thoracic to the axillary region. Over the course of a female’s annual life cycle,
mammary glands progress from being undeveloped during the non-breeding season
to well developed at peak lactation (Heideman, 1988). Mass of mammary glands
can be substantial, as the emptied mammary glands of lactating Tadarida
brasiliensis average 8% of a female’s post-absorptive body mass (Davis et al., 1962).
Mammary glands may account for an even greater percentage of a female’s body
mass in some pteropodids such as Cynopterus brachyotis (Dobson, 1878).

All female bats possess at least one pair of thoracic nipples, generally located in
the anteriolateral pectoral position (Figure 10.1). Only two vespertilionid genera.

[N -]
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Figure 10.1 Lactating female Dayak fruit bat, Dyacopterus spadecius (Pteropodidae), showing an
attached pup (left) and a well-developed nipple (right). Note the axillary position of the exposed
nipple, which is characteristic of most bats. Photo by Charles M. Francis.

Lasiurus and Otonycteris, have two pairs of functional nipples. This extra pair of
nipples is found in species where litter sizes are greater than two (Nowak, 1994).
As in other mammals, the condition of nipples is an important criterion for parity,
as relative nipple size can be used to distinguish parous and multiparous females
from non-parous females (Racey, 1988).

Nipple morphology has been used to assess reproductive status of both
microchiropterans (Ryberg, 1947; Sluiter, 1954; Sluiter and Bowman, 1951;
Pearson et al., 1952; Racey, 1974; Baage, 1977) and megachiropterans (Ryberg,
1947; Heideman, 1988; Francis et al., 1994), but interpretations of reproductive
status based on nipple size alone can be ambiguous (Racey, 1988). Distinguishing
between primiparous and nulliparous females outside the breeding season is often
difficult. In microchiropterans, nipples of nulliparous females, and sometimes
primiparous females, are rudimentary and often give rise to tufts of hair, whereas
nipples of older parous females are typically cornified and blackish or yellowish in
color, with few or no hairs (Pearson et al., 1952; Sluiter, 1954; Racey, 1974, 1988;
Baage, 1977). Based on a combination of criteria, including relative nipple size,
presence or absence of tufts of hairs on the nipple, and degree of nipple
cornification, the assignment of females to relative stages of lactation and post-
lactation may be possible (Heideman, 1988; Kunz et al., 1996).
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With the exception of a few species in which males reportedly lactate or have
hypertrophied mammary tissue (Dobson, 1878; Ryberg, 1947; Francis et al., 1994},
males typically have rudimentary nipples and the mammary glands are absent or
inconspicuous. The histomorphology of mammary tissue in lactating males of
Dyacopterus spadiceus is indistinguishable from that of lactating females.
Although the nipples of lactating females and males are darkened and cornified,
the nipples of lactating males are considerably smaller than those of females
{(Francis et al., 1994).

Some bats posses a pair of ‘holdfast’ nipples in the ventral, posterior-medial
region, near the genitalia (Simmons, 1993). These ‘false nipples’ are present in all
species of the families Craseonycteridae, Megadermatidae, Rhinopomatidae and
Rhinolophidae, where they are present ubiquitously in females but occur
inconsistently in males. A lactiferous function of false nipples has been confirmed
in some species of Rhinolophidae and Rhinopomidae based on the expression of
milk and/or the characteristic texture, color, and ductal branching of mammary
tissue (Simmons, 1993). Pubic nipples appear to act primarily as holdfasts for
infants (Simmons, 1993). Young bats in the Rhinolophidae and Rhinopomidae
adopt unusual postures when attached to pubic nipples in which the pup’s head is
positioned posteriorly on the female’s ventral surface and their legs are wrapped
around the neck of their mother (Gaur and Shahrohk, 1989; Duangkhae, 1990;
Vaughan and Vaughan, 1987; Simmons, 1993).

Nursing behavior

Early studies described nursing behavior in Tadarida brasiliensis and include such
statements as ‘mothers apparently act as one large dairy herd delivering milk
passively to the first aggressive customer’ (Davis ef al., 1962) and in Miniopterus
schreibersii that ‘suckling of young is not an individual but a communal business’
(Brosset, 1962b). However, more recent studies suggest that non-offspring nursing
does not occur in bats (e.g., Antrozous pallidus, Davis, 1969; Brown, 1976;
Eptesicus fuscus, Davis et al., 1968; Myotis Iucifugus, M. thysanodes, M. velifer,
Corynorhinus rafinesquei, Pearson et al., 1952; Twente, 1955; Pipistrellus
pipistrellus, Hughes et al., 1989; Bishop et al., 1992, and Rousettus aegyptiacus,
Kulzer, 1962) except in cases of mistaken identity (Tadarida brasiliensis,
McCracken, 1984), when the opportunity for reciprocity is high (Nycticeius
humeralis, Wilkinson, 1992a), or when maternal mortality is high among captive
individuals (Pipistrellus pipistrellus, Eales et al., 1988).

Young bats may attempt to suckle indiscriminately, as in Pipistrellus pipistrellus,
Mpyotis velifer, and Tadarida brasiliensis (Hughes et al., 1989; Twente, 1955;
McCracken and Gustin, 1991). This behavior can lead to non-offspring suckling if
the identity of young is mistaken (McCracken, 1984) or when opportunity for
reciprocation is high (Trivers, 1971). Non-offspring nursing was observed in 18%
of all suckling bouts in Nycticeius humeralis when young were greater than two
weeks of age (Watkins and Shump, 1981; Wilkinson, 1992a), but this percentage is
greater than expected if non-offspring nursing occurred randomly (Wilkinson,
1992a). Watkins and Shump (1981) suggested that after two weeks of age, selective
nursing may be too energetically expensive for mothers. Wilkinson (1992a) found
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that females of N. humeralis did not nurse matrilineal kin preferentially, but
selectively nursed young females, and 73% of observed incidents of non-offspring
nursing involved females whose pups had already begun to forage.

Wilkinson (1992b) postulated that female-biased communal nursing in N.
humeralis gives both an immediate and delayed benefit to lactating fermales which
experience variable hunting success, assuming that roostmates exchange
information about feeding and roosting sites. He also suggested that communal
nursing may increase with matrilineal colony size and thus give the immediate
energetic benefit of mass reduction to those females with milk in their ducts and
by giving them an opportunity to offload the milk prior to their next feeding bout.
In Tadarida brasiliensis, non-offspring nursing occurs in approximately 17% of the
females (McCracken, 1984), but because of large colony size and lack of group
stability (Villa and Cockrum, 1962; Constantine, 1967; Cockrum, 1969), the
evolution of communal nursing through kin selection or an opportunity for
reciprocity is unlikely (McCracken and Gustin, 1991).

No cases of nursing have been observed where mutual auditory and olfactory
exchanges were absent, making ‘milk dumping’ by N. humeralis, as suggested by
Watkins and Shump (1981), unlikely. Instead, non-offspring nursing may be
attributed largely to parental mistakes and milk stealing by young (McCracken and
Gustin, 1991). Milk theft or ‘adoptive’ nursing may increase when animals are
disturbed by human observers (Fogden, 1971).

Communal nursing appears to be more common in captive situations (Macrotus
californicus, Gould, 1977; Desmodus rotundus, Schmidt, 1978, Mills, 1980;
Pipistrellus pipistrellus, Eales et al., 1988). In these instances, communal nursing
situations may be more frequent because opportunities for reciprocation are higher.
Although communal nursing has been documented for D. rofundus in captivity,
this behavior has not been observed in the wild (Schmidt, 1972; Wilkinson, 1988).
Individuals of D. rotundus regurgitate blood to starved roostmates (Wilkinson,
1984), but regurgitation is less energetically expensive than milk production. In a
captive colony of P. pipistrellus (Eales et al., 1988), five of eleven pups suckled
from two females. These authors suggested that this behavior may have been
associated with high infant mortality and the need for the mothers who lost their
young to offload excess milk.

In many species of bats, newborn pups are attached almost continuously to their
mothers, and appear to suckle on demand during both day- and night-roosting
periods. In a few species, pups during their first few weeks of life may remain
attached to their mothers while they are on nightly foraging bouts, as in Carollia
perspicillata (Pine, 1972; Bradbury, 1977a), Artibeus lituratus and Glossophaga
soricina (Tamsitt and Valdivieso, 1963), Pteropus poliocephalus {(Bartholomew et
al., 1964), Choeronycteris mexicana (Mumford and Zimmerman, 1964), and
Desmodus rotundus (Schmidt and Manske, 1973). In other species, suckling is not
constant, but instead milk is provisioned to pups on a regular schedule. In Myotis
thysanodes (O’Farrell and Studier, 1973), Miniopterus schreibersii (Brosset, 1962b),
Miniopterus australis and M. pusillus (= macrocneme; Hill, 1983; Sanborn and
Nicholson, 1950), Macrotus waterhousii (Goodwin, 1970), and Tadarida
brasiliensis {Davis et al., 1962; Pagels and Jones, 1974; McCracken and Gustin,
1991; Kunz et al., 1995b), females leave their offspring in a cluster with other pups

E
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and roost apart with other females during the day. Typically, females find and
suckle their young soon after they return from foraging and again in the late
afternoon.

In some species of bats, energy density of milk may be closely linked to suckling
frequency. Kunz et al. (1995b) found that energy density of milk in Tadarida
brasiliensis, a bat that nurses its young on a schedule following each of two nightly
foraging periods, is higher than that of Myotis velifer and M. lucifugus, both of
which allow their young to remain attached to their nipple throughout the day.
Notwithstanding, the amount of time a pup remains attached to its mother’s nipple
throughout the day does not imply that milk is produced in constant quantities.
Further studies are needed to verify whether a bat’s suckling schedule is correlated
with its mother’s milk composition. In most mammals the suckling schedule of
females is not a reliable index of milk energy (Oftedal, 1984).

Mother—offspring conflict during the latter stages of lactation appears to be rare
in bats, and mothers and their young of several species are known to forage
together near or shortly after the onset of nutritional independence. Only one study
has described overt mother—offspring conflict at the time of weaning. In the
monogamous species, the young of Lavia frons were not weaned until nearly three
weeks after they began to forage. During this period, females were occasionally
observed ‘grappling’ and fending off young that were trying to suckle (Vaughan and
Vaughan, 1986). Hughes et al. (1989) described females of Pipistrellus pipistrellus
as being indifferent to the approach of their young as they reached weaning age,
although active rejection was not observed.

Overt conflict between mother and young may not be common among bats.
Mothers and their young have been observed or captured while flying together at
the onset of weaning in some species: Antrozous pallidus (Bateman and Vaughan,
1974), Cardioderma cor (Vaughan, 1976}, Eptesicus fuscus (Brigham and Brigham,
1989), Lavia frons (Vaughan and Vaughan, 1987), Noctilio albiventris (Brown et al.,
1983), and Saccopteryx leptura (Bradbury, 1977a). During their first year, juvenile
Desmodus rotundus often feed from the same wound as their mothers (Wilkinson,
1985).

Milk composition and intake by young

Milk composition and milk energy intake by young bats, as indices of maternal
effort, have been investigated in relatively few species. Both terrestrial and marine
mammals exhibit considerable interspecific variation in both quality and quantity
of milk produced (Oftedal, 1984, 1985; Oftedal and Iverson, 1995). Studies that
have examined the nutritional requirements of female mammals and their young
during lactation have largely focused on females and the proximate composition of
milk. Few studies have explored the possibility that nutritional factors (e.g.,
minerals) other than energy and nutrients derived from fat, protein, and
carbohydrates may influence postnatal growth of young bats (Barclay, 1994, 1995).

(a) Macronutrient composition. For species of bats in which the proximate
composition of milk has been reported (Kunz et al., 1983, 1995b; Oftedal and
Iverson, 1995; Messer and Parry-Jones, 1997; Stern et al., 1997; Korine and Arad,

B 3



¥ 1

L 01 - 1’0 8't 90D 0'¢T 80¢ 4 M snaiaup snaqnay
seppewoisollyy

(1) 1z 4 - - ¥E LL 8'sT $'9¢ »ead

.S #9) 11 06 - - 9t €8 €Ll 162 I M Aea

TEM
L o) ¢ '8 - 0 8T €D €91 ST I M

4 SN 25°01 L0 - L'E "1 6’8l (443 I M Sisuaj|ispiq bplopp}
mm_u_wwo_oz
razadoydodiyy

9'C 'S - - S's 6T 0’6 - 2|

(€ ¢ £ - - 19 £ V3 - plw

£ F1) 1 ST - - LS (44 LT - 4 A Apea
snopirdA8ap snyasnoy

pa 9y - - qs 9T 6L L oe|

| L1914 £E - - 8'S I'g £9 91 4 0 Aea
snudduwioa sndosany

0l-g 69 - - 8'9 9t €8 £ ae|

| L% 9y - - 9 I'e 68 6'81 4 o} Atee
$ISUaDLIPO4 sndosaiy

6—9 0's - - (& 6T L6 61T ale

[ €1 [a% - - LS LT 18 Ll 4 o) Alres
snping sndosalyg

8 yi—-l 8T 90 - ¥9 9t (44 LT Ei M piw 01 Apes

1z ¥ S0 - 6'S 8T 6l 1t ae|

1€ £T 0 - €9 ¥T L 80l pru

8 Sl E S0 - 79 x4 0T Tl 4 o} Apes
snipydssoijod sndossyy

81— 9 - - 9's 6T ¥'6 88l a1

1 11-8 8¢ - - 09 ST 9L 9 4 2 Aea
snupjawodAy sndosayy
ol €)1 50'€ - - 0% [4% §€ 0z 4 DM 1213qg)yom snioydowody
aepipodousig
3 esoadouiyoedaly

{%)

EL B/p) (%) (%) (%) (%) (%) REELIN 2Ande) {uani8 1) uoneidEy
RIEN ajdweg A3umug ysy a1enD  ajeapAyoqie])  urejody 184 Aiq 491 40 PlIAA jo adu1g pue exe]

(uonisodwod 1usd Jad e se passaidxe aue senjea Jusianu |e) jiw 3eq Jo uomsodwo 1°Q] djqeL




barg

SSIPMIS 4210 aim Uostiedwiod s3ele) 03 (B g = e 1) 3Pt 03 petsaAuos

84 sanfeA B/jed Ul sioINE ay3 Aq paiuesaid ssam SenjeA 8seiy sased awos uj (8 £|) s3esphyoqued pue ‘(B4 £1) wenoad ‘@ gg) ey jo susfeAnbs AZsus 33 woly pajended 3usIuod A8isug,
"suBuodiod aespAiogues pue ‘uisiold 9e sy 40 wns ay3 wouy paipasd s| WaUEd tenew Aig,

'S661 US| | 86| 1D 19 BIND "0} ‘566 ‘UOSIBA] puE EPIRQ 6 '661 ‘souof-ALieg pue

195531 '8 196 | 4aipnIg pue sseuuafz ‘bL61 ‘ssauus{ 9 !qgge | “p 30 ZUny "G lE86 | 1D 13 ZUNY| '} 946 | *PRAY puB BULIOY °€ 1996 | ‘as18aUqINy 7 ‘ErEp paystandun ‘zumy) "y pue POOH YAA'| isadususjy,
“USAIB 30U 51 az1s ajdiwes saIedIPUS DN ‘aSued E se paauasaud sj szis ojdwes

‘ased sl uj ‘sajduies auwos Joj pautiopied 3ou siem saskeue IV "azis 3|duwes wouy 3uaiayip j1 ‘paxjiw s3eq o Jaquny ie sesaipua.ed uy sanjep siskeue 1oy pajood alam sieq [enplapur wouly sajdwes,
Aoym oy A\ pUE UpsED 10} 3 pajaqe §) JuBUOdLoD 42e8 ‘Uieno.d apns ey Jayed pasussaud e supsiosd Asym pue uisses UBYAA,

IBIp S [RWIE 34 Jo uondidsep pajjelep ©

aA12 30u op Ajjeseust s1uodas Paysijgnd 1easmol ‘suawa|ddns Justinu aedal ueno s3eq sande?) :@I0N ‘(g) poolq pue(N)) Jedsu ‘() any «(1) s3esup epnpu; s181(] “saroads jo 181p fea1dha serenipuy,
“Bupjiw 03 Joud (D) Aandes uy o (M) 3yBned pim suem sieq JaLIaym seaesipuy,

9 ! #'01 91 ~ y'e 4 611 S0y I M sapoupsAip snody
()¢ 901 - - vy L0l 6’61 yTe ead
S (87) ¢ 1L - - 0¥ 6 911 ¥'sT ! M Ajes
JaftjaA snoApy
) € 9'8 - - 0¥ $8 861 I'LT »jead
S 09) ¥ v - - 6'€ $6 vt §'9T 1 M Apres
(o1 € Sz - - gt L8 ¥l 9T ae|
(s1) 9 69 - - A 8's £l EET prw
¥ VAR L - - e 6'8 '€l ST ! M Aes
SEIM
L (6) T 9% - 70 1'e g€ 09 91 I M snnjiny snodyy
b @y ¥'8 - - ST 9 $'91 K4 | M smosn} snoisaidy
aepluoljntadsap
CTM
A 4 ST - 1'0 'y 80D 06T 9 4 M 1jo201p3 s3poAduiop
$6 - - o'y L6 691 L€ (P 02) o)
L'l - - 0% 1’6 0'el 15T (P op) pru
I TE-1¢ 6'S - - 0¥ 8L 1'6 3 14 M (P ot) Aes
SMDISBY SNLLOISOpALYJ
81 M
L &Nz #%'8 - - 8y . STD S8l 9L
4 SN 9T 90 4] ¥'S vy Ll It N M fuloquos suapAuoidar
80 M
L Tt TNy - 1'0 6 I'tD [4) 011 N M buyos pIoydossols
L @1 - - [4)) 'y 1~ - - 4 M pypidsiad pjjoiy
6 Iz i£°g - ~ 19 9t 0'6 8Ll 4 ) sead
9'E M
L [4 #'6 - 1'0 £/ "D 98] 9°0¢ 4 M sisuadipwipf snagply



430 T.H. Kunz and W.R. Hood

1998; W.R Hood and T.A. Kunz, unpublished; Table 10.1), the milk from
insectivorous species generally has higher dry matter, fat, and protein content than
from omnivorous or frugivorous species (Kunz and Stern, 1995; Table 10.1). Some
of this variation may reflect species-specific differences in maternal diet. The
relatively low fat, protein and dry matter content of milk of frugivorous species is
consistent with this hypothesis given the relatively low fat and protein content of
available fruit (Morrison, 1980; Fleming, 1988; Kunz and Diaz, 1995). Insectivorous
bats produce milk with percentages of fat and protein which often exceed values
reported for other small mammals, whereas carbohydrate content of milk is similar
to that of other mammals (Jenness, 1974; Oftedal, 1984; Oftedal and Iverson, 1995).
These findings also are consistent with Blaxter’s (1961) hypothesis that small
mammmals produce milk of higher energy content than most large mammals.

For many species of bats, either the stage of lactation was not reported or sample
sizes are too small to make meaningful interspecific comparisons. Jenness and
Studier (1976} suggested that dry matter and fat content of the milk of some
frugivorous phyllostomids (e.g., Artibeus cinereus, Vampyrodes caraccioli and
Leptonycteris sanborni) may be similar to that of insectivorous vespertilionids and
molossids (but see Huibregtse, 1966). However, sample sizes in the two latter
studies were inadequate to be considered representative of these species. This
problem is further highlighted by comparing the results of Jenness and Studier
(1976) for Artibeus jamaicensis (n = 2) with that of Oftedal and Iverson (1995; n =
21). The fat composition of milk at peak lactation reported by Oftedal and Taft
(unpublished data, cited in Oftedal and Iverson, 1995) is half the value reported by
Jenness and Studier (1976). Thus, based on a larger sample size, the values reported
in Oftedal and Iverson are considered more representative, even though values
derived from the latter study were from captive bats, and those from Jenness and
Studier (1976), and Huibregtse (1966) from free-ranging populations. The
nutritional plane of captive bats may differ from free-ranging bats (Studier and
Wilson, 1979), although Messer and Parry-Jones (1997) found no significant
differences between the milk composition of wild and captive Pteropus
poliocephalus.

(b} Fatty acid composition. Fatty acids in bat milk have been identified for 13
species (Table 10.2) and, as in other mammals, the lipid fraction is composed
almost entirely of triglycerides (Davies et al., 1983; Jenness, 1985). Fatty acids
which esterify to form triglycerides may originate from the diet or be synthesized
de novo in the mammary gland (Iverson and Oftedal, 1995). The balance between
de novo and dietary fatty acids found in milk can vary according to stage of
lactation and diet (Iverson and Oftedal, 1995). Dietary and milk fatty acids for a
given stage of lactation have not been reported for the milk of any bat species.
Concentrations of linoleic (18:2} and linolenic (18:3) in insectivorous bats are
higher than has been reported for other terrestrial mammals. The concentrations of
these two fatty acids are also high in insectivorous marsupials and thus may reflect
their insectivorous diet (Iverson and Oftedal, 1995). Fatty acid signatures of milk
have been used to identify dietary items and dietary shifts in pinnipeds (Iverson,
1993; Iverson et al., 1997), but whether such signatures ultimately prove useful for
identifying dietary shifts in bats remains to be determined.
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(c) Mineral composition. Mineral composition of bat milk has only been
determined for two insectivorous (Studier and Kunz, 1995), eight frugivorous
(Studier et al., 1995; W.R. Hood and T.H. Kunz, unpublished), and one omnivorous
species (Stern et al., 1997) (Table 10.3). Moreover, stage of lactation and variation
in mineral content of milk during the lactation period has only been reported for
one insectivorous species, Tadarida brasiliensis (Studier and Kunz, 1995) and one
omnivorous species, Phyllostomus hastatus (Stern et al., 1997). Concentration of
calcium, magnesium and sodium in the milk of T. brasiliensis declines over the
course of lactation, whereas, potassium, nitrogen, and iron remain constant
(Studier and Kunz, 1995}). Similarly, both magnesium and caleium content
decreased from birth until weaning in P, hastatus, but no change was observed in
sodium (Stern et al., 1997). Potassium, nitrogen and iron did not change over the
course of lactation in P. hastatus (Stern et al., 1997). Galcium, magnesium and
potassium, however, did not vary over the course of lactation in captive Pteropus
hypomelanus and P. vampyrus (W.R. Hood and T.H. Kunz, unpublished), although
this may reflect a uniform diet. Sample sizes were small and stage of lactation was
not reported for the frugivorous phyllostomids evaluated by Studier et al. (1995),
thus a comparison among dietary habits could not be made. Notwithstanding,
preliminary analyses suggest that the potassium content of milk in frugivorous
species is generally higher than in omnivorous and insectivorous taxa (W.R. Hood
and T.H. Kunz, unpublished).

Available evidence suggests that females of insectivorous bats may be severely
calcium limited during lactation (Kwiecinski et al., 1987; Studier et al., 1991;
Keeler and Studier, 1992). Young bats, as in other mammals, remain nutritionally
dependent on their mothers until they are able to feed independently (Barclay,
1994; Kunz, 1987; Pond, 1977). While young of other mammals are weaned at
nearly 40% of adult body mass, young bats are not weaned until they reach about
71% of adult body mass (Barclay, 1994, 1995). This extension in the duration of
dependency occurs because young bats are unable to fly and feed on their own
until they have reached adult dimensions (Kunz, 1987; Barclay, 1994, 1995}, and
mineralization of wing bones is almost complete {Swartz et al, 1994;
Papadimitriou et al., 1996).

Bone is the primary reservoir of calcium within the body, and resorption of
calcium from bone typically occurs when the diet does not meet current demands.
Calcium demands are especially high during gestation and lactation, when females
are faced with the additional burden of providing nutrients for foetal and neonatal
development. Kwiecinski et al. (1987) found that bone density in females of Myotis
lucifugus is lower during late gestation and lactation than at other times, suggesting
that active bone resorption occurs at these times. In addition, based on foraging
times and attack rates on insects, Aldridge and Brigham (1991) found that lactating
females of Eptesicus fuscus foraged for a longer time than was expected to meet
energetic demands, suggesting that dietary habits may be constrained by
requirements other than energy. In contrast, calcium content of lactating females of
Miniopterus schreibersii was not significantly different from those during the non-
reproductive period (Bernard and Davison, 1995). Calcium absorption from bone
can occur during lactation even in well nourished humans (Sowers et al., 1993).
Animals that experience bone loss during lactation may not remain in a state of
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mineral stress. At least in humans, bone density recovers quickly following
weaning, and even individuals that experience a subsequent pregnancy are not at
risk for substantial bone loss (Sowers et al., 1995).

(d) Milk yield of mothers and intake by young. An essential aspect of
understanding nutritional and energetic requirements of lactation is a reliable
estimate of milk yield. Milk yield has only been measured directly in four
insectivorous and one omnivorous species (Table 10.4). Based on isotope dilution,
Kunz (1987) reported milk energy yield at peak lactation in Myotis lucifugus and
Eptesicus fuscus as 18.5 and 22.87 k] per day, respectively. These values were
similar to those predicted from allometric equations of Hanwell and Peaker (1977)
and Oftedal (1984). Using estimates of milk composition from Kunz ef al. (1983)
and data on metabolic rates of pups, Kurta et al. (1989, 1990) predicted milk energy
yield at peak lactation in Myotis lucifugus and Eptesicus fuscus to be 19.3 and 29.7
kJ per day, respectively.

Predicted values for milk yield (Figure 10.4) are based on both the metabolic
mass of females and their young, as described by Oftedal (1984). Females of N.
humeralis which give birth to twins reportedly produce up to one-half their body
mass in milk per day, and milk production apparently increases even further when
litter size is three (Steele, 1991). By contrast, milk output in E. fuscus females as
predicted by the Oftedal (1984) equation is less than the predicted values (Kunz,
1987). Values of milk yield reported for captive P. auritus (McLean, 1995) are nearly
two times higher than predicted from Oftedal’s (1984) equation.

At least two species of bats that give birth to singletons produce more milk than
predicted from both allometry and litter size. Stern (1995) found that free-ranging
Phyllostomus hastatus produced a maximum of 15.7 ml per day of milk at peak
lactation. This value is comparable to estimates of milk production, based on body
size, for rodents that produce more than one young (Kenagy et al., 1990; Rogowitz
and McClure, 1995). At peak lactation, Tadarida brasiliensis has a milk energy
yield three times predicted values (T.H. Kunz, unpublished).

Regurgitation: special case in Desmodus rotundus

In addition to provisioning pups with milk, females of Desmodus rotundus
regurgitate blood to their young. Within minutes of birth this blood may
inoculate the digestive tract of pups with symbiotic bacteria (Miiller et al., 1980).
However, females do not routinely feed blood meals to their young until they are
about three months old, after which this behavior continues until the onset of
weaning at approximately seven months {Schmidt and Manske, 1973; Wilkinson,
1984, 1988). .

During 400 hours of focal observations on the behavior of free-ranging Desmodus
rotundus, Wilkinson (1984) reported 110 bouts of regurgitation, of which 75%
occurred between mothers and their dependent young. The other 25% were between
females and non-dependent young, relatives, and unrelated individuals. Thus,
food sharing in D. rotundus appears to be associated with the degree of relatedness
and the opportunity for reciprocation (Wilkinson, 1984). In this species, females
belong to small, stable social groups of kin and non-kin, where opportunities for
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reciprocation are high. Females that do not obtain a nightly blood meal are more
likely to be fed by a female who has recently received a meal from another member

of the group.

10.2.3 Non-nutritional Care

Thermal influences

The evolution of membranous wings allows bats to exploit an aerial niche for the
acquisition of food, but the increased surface area gained with the evolution of
flight also increases passive thermal conductance during flight and in roosting
situations (Ochoa and Kunz, 1999). Increased thermal conductance lowers the
ability of bats to maintain euthermy, and thus may increase the energetic demands
of thermoregulation or alternatively lead to torpor and reduced energy
expenditure. For bats, as in other altricial mammals, females often help maintain
the euthermic body temperature of their young by sharing body heat through
conduction and radiation. This thermal influence is directly proportional to the
amount of time a mother spends in contact with its young.

Because newborn bats are altricial, often lacking hair and with a limited ability
to maintain euthermic body temperatures (Fujita, 1986; Kurta and Kunz, 1987),
they often depend on their mothers for heat. McLean and Speakman (1997) found
that for Plecotus auritus, physical contact between mothers and pups declined as
the pups increased in age. At ambient temperatures of 10 and 20°C, newborn
Myotis lucifugus were unable to maintain their body temperature when they
roosted alone (Fujita, 1986). However, when these pups were allowed to form
clusters they maintained elevated body temperatures for longer periods at these
same ambient temperatures.

A decrease in body temperature in lactating females can adversely affect milk
protein synthesis and output by females (Wilde et al., 1999), and indirectly the
growth rates of pups (Hoying and Kunz, 1998). Because torpor reduces the general
level of activity in mammals, this may adversely affect the maturation of the brain,
internal organs, and muscles and lead to subsequent motor defects and reduced
feeding efficiency (Gubernick and Klopfer, 1981). -

Rapid postnatal growth and survival of young bats is enhanced when females
select roosting environments that near thermal neutrality or form dense clusters
that promote efficient heat transfer to the pups. Thus, the gregarious nature of
young bats in many species also promotes conductive heat exchange which is
expected to facilitate digestion and improve assimilation efficiency (Twente, 1955;
Davis et al., 1962; Kunz, 1974), and facilitates rapid postnatal growth (Pearson et
al., 1952; Dwyer and Hamilton-Smith, 1965; Kunz, 1973; Tuttle, 1975).

Ambient temperatures in the thermoneutral zone of bats not only provide
favorable conditions for postnatal growth (Tuttle and Stevenson, 1982; Kunz and
Stern, 1995), but also reduce thermal stress to lactating females (Huibregtse, 1966).
High energetic costs experienced by females during lactation in M. lucifugus and
M. thysanodes exceed levels that would allow bats to physiologically regulate their
body temperature (Studier et al., 1973). Not unlike poikilotherms, bats may
maintain their body temperatures behaviorally. Clustering of bats modifies the
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microclimate of the maternity roost by maintaining optimum roost temperatures
(Licht and Leitner, 1967; Kunz, 1973).

Many temperate zone bats form maternity colonies ranging from a few dozen up
to several million individuals (e.g., Eptesicus fuscus, Davis et al., 1968; Miniopterus
schreibersii, Dwyer, 1963, respectively). Within these colonies, mother—pup pairs
aggregate in dense clusters, and maintain their body temperatures greater than those
which roost singly (Twente, 1955). Mean rates of oxygen consumption are lower in
clusters than in individuals at ambient temperatures between 15-35°C, and
percentage mass loss is also decreased giving cluster members a metabolic
advantage (Herreid, 1967; Trune and Slobodchikoff, 1976).

Bats and other small mammals often enter torpor when ambient temperatures are
too low to maintain an elevated body temperature or when food resources are
scarce (Wang and Wolowyk, 1988; Thomas, 1995: Hoying and Kunz, 1998).
Because torpor slows physiological processes, including those required for milk
production (Wilde et al., 1999), this form of energy comservation can be
disadvantageous during lactation. Some species, however, remain euthermic
during lactation, and apparently do not enter torpor at this time; these include
Antrozous pallidus and Myotis yumanensis (Licht and Leitner, 1967), Tadarida
brasiliensis (Herreid, 1967; Licht and Leitner, 1967), Miniopterus schreibersii
(Dwyer, 1964), Myotis nigricans (Wilson, 1971), Lavia frons (Vaughan, 1977),
Macrotus californicus (Bradshaw, 1962). Others, however, enter torpor when
ambient temperatures are low and food resources are scarce — Eptesicus fuscus
(Burnett and Kunz, 1982; Audet and F enton, 1988; Hamilton and Barclay, 1994;
Grinevitch et al., 1995), Myotis lucifugus (Studier and O'F arrell, 1972; Burnett and
Kunz, 1982), Myotis thysanodes (Studier and O’Farrell, 1972), Pipistrellus
subflavus (Hoying and Kunz, 1998). Hamilton and Barclay (1994) examined
differential use of torpor by males and females of Eptesicus fuscus during the
reproductive season, and found that torpor is less frequent in females when
foraging conditions are poor (Grinevitch et al., 1995).

Pup retrieval and transport

Transport of young bats by mothers while foraging has been reported for several
frugivorous and nectarivorous species (e.g., Carollia perspicillata, Pine, 1972;
Bradbury, 1977a; Artibeus lituratus and Glossophaga soricina, Tamsitt and
Valdivieso, 1963; Pteropus poliocephalus, Bartholomew et al., 1964:
Choeronycteris mexicana, Mumford and Zimmerman, 1964; Desmodus rotundus,
Schmidt and Manske, 1973), but this behavior is UNCOMINON OF Tare among most
small insectivorous species (Pipistrellus pipistrellus, Rakhmatulina, 1972; Myotis
velifer, Kunz, 1974; Myotis lucifugus, Kunz and Anthony, 1996; Hipposideros
caffer, Brosset, 1969; Tadarida brasiliensis, Davis et al., 1962; and Nycticeius
humeralis, Watkins and Shump, 1981). Exceptions among the insectivorous
species include Taphozous perforatus and Taphozous melanopogon (Brosset,
1962a).

Transport of a pup during the lactation period is expected to increase a female’s
wing loading, decrease maneuverability and foraging efficiency (Norberg, 1987;
Hayssen and Kunz, 1996), and increase energy expenditure (Hughes and Rayner,
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1993). Since most insectivorous species seek moving prey, and many ingest up to
30% of their pre-feeding body mass during a single feeding bout (Kunz, 1974; Anthony
and Kunz, 1977; Kunz et al., 1995a), the additional load of transporting young bats
in flight is expected to reduce the ability of a mother to feed efficiently. A small
insectivorous bat, transporting one or two relatively large pups on prolonged foraging
bouts, probably could not meet their daily energy demands while carrying pups.

Females of several species of bats have been observed or captured while carrying
their non-volant young (Barbour and Davis, 1969; Fenton, 1969; Davis, 1970;
Ansell, 1986; Baumgarten and Vieira, 1994), and some species actually carry volant
young to foraging areas (Marimuthu, 1988; Radhamani et al., 1990). Whether these
females were transporting pups to alternative roosts in response to disturbance
while on foraging bouts, is unknown in most situations. If predation is reduced by
moving pups to alternative roosts, as in Pteropus poliocephalus (Nelson, 1965),
Saccopteryx bilineata (Bradbury and Emmons, 1974), and Uroderma bilobatum
(Lewis, 1992), the ability of predators to predict the location of potential prey
should decrease.

Species that regularly move among several alternative tree roosts during the
lactation period (Barclay and Brigham, 1996) should sustain mother—pup contact
and reduce the risks of predation. Females of some species (e.g., Megaderma Iyra)
move their young to night roosts while they are foraging (Marimuthu, 1988}, but
because of the high cost of flight associated with bats carrying extra loads (Hughes
and Rayner, 1991, 1993), mothers are unlikely to transport their young on
prolonged foraging flights unless they benefit by experiencing reduced risks of
predation or young bats are able to learn important foraging skills (Radhamani et
al., 1990).

Alloparental care

Alloparental care (non-offspring care) has been observed in several species of
mammals (Gubernick and Klopfer, 1981; Reidman, 1982), but reports of care-giving
behavior by unrelated bats is rare. Observations of allogrooming in bats have been
made mostly in captive situations. Under these conditions, females typically
groom their young during and immediately following parturition (Kleiman, 1969;
Kunz et al., 1994a; McLean, 1995; W.R. Hood, personal observations). The most
thorough documentation of allogrooming in bats was reported for Plecotus auritus
(McLean and Speakman, 1997), where it was shown that the relative amount of
time that females spent allogrooming decreased over the course of lactation.
Similar observations were reported by Kleiman (1969) for Nyctalus noctula,
although the significance of such declines in allogrooming remains unclear.

Only a few studies have reported allogrooming activities in free-ranging
populations. Mothers may lick, nuzzle, scratch, rub, or hang in direct physical
contact with their pups (Burnett and August, 1981; Winchell and Kunz, 1996). In
Desmodus rotundus, allogrooming not only occurs between mother and offspring,
but also this behavior is reciprocated among individuals of different age groups
(Wilkinson, 1986). Allogrooming in D. rotundus appears to be independent of roost
and ectoparasite levels, and thus may facilitate individual recognition in roosting
situations and could facilitate food sharing (Wilkinson, 1986).
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Alloparental care was observed at the time of parturition in captive Pteropus
rodricensis (Kunz et al., 1994a). A single female assisted and tutored an
unrelated female before, during, and after parturition. The helper female
groomed the mother’s anovaginal region, grasped her with partially outstretched
wings, fanned her, ‘tutored” her in the feet-down birthing position, groomed the
emerging pup, and physically nudged the pup toward its mother’s nipple.
Similar behaviors have been observed on other occasions in this species (W.R.
Hood, personal observations). Reports of ‘baby-sitting’ have been made for
Myotis thysanodes (O’Farrell and Studier, 1973) based on the presence of a few
adult females in a maternity roost where large numbers of pups were present. An
alternative explanation for this and similar observations is that females in late
pregnancy may delay departure from a roost when parturition is imminent
(Kunz, 1973), and thus give the appearance to an observer that adults were baby-
sitting.

Most females selectively nurse their own offspring, although there have been
reports of misdirected nursing in captive groups of Pipistrellus pipistrellus
(Kleiman, 1969; Eales et al., 1988; Hughes et al., 1989; De Fanis and Jones, 1996).
In free-ranging populations of Tadarida brasiliensis (McCracken and Gustin, 1991),
pups may engage in milk stealing, and in Nycticeius humeralis mothers sometimes
nurse unrelated offspring as the latter approach weaning age (Wilkinson, 1992a).
On theoretical grounds, one could expect alloparental nursing to evolve through
kin selection or reciprocity if the benefits of provisioning non-related pups
outweighed the costs, especially in colonies with high levels of relatedness.
However, there is no evidence for reciprocity or kin-selection in either T
brasiliensis (McCracken et al., 1994) or N. humeralis (Wilkinson, 1992a).
Wilkinson (1992b) suggested that females of N. humeralis may gain an immediate
benefit by dumping excess milk to unrelated offspring, if foraging costs are lower
with a reduced body mass. Alternatively, females may gain a delayed benefit if they
nurse unrelated pups that return to the same colony in subsequent years and share
information about feeding and roosting sites (Wilkinson, 1992b).

10.2.4 Paternal Care

Pup and mate guarding

The roosting and social habits of most tropical species remain unknown (Kunz,
1982), and evidence for a male’s contribution to roost establishment, maintenance,
and mate and pup guarding are known for only a few species. In most temperate
zone bats, maternity roosts are inhabited largely by females and their young, where
males assume little or no responsibility for parenting. However, in tropical regions,
males of some species defend roosts or harems and thus may invest considerable
effort during the period when females are gravid and young are present. In Carollia
perspicillata, Phyllostomus hastatus and Artibeus jamaicensis, males incur costs
by defending females and their pups from other males at roost sites, although such
defense may occur independently of the presence of pups (Porter, 1979; McCracken
and Bradbury, 1981; Morrison and Morrison, 1981; Kunz et al., 1998a). Harem
males of some emballonurids {Saccopteryx bilineata and S. leptura) incur costs by
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defending females on foraging grounds and at roost sites (Bradbury and Emmons,
1974; Bradbury and Vehrencamp, 1977a), suggesting that such defense is not
directly linked to paternal care of offspring. In some monogamous species, Lavia
frons (Vaughan and Vaughan, 1987), Cardioderma cor (Vaughan, 1976), and
Vampyrum spectrum (Vehrencamp et al., 1977), males may protect females and
their young from predators by defending the foraging territories in which young
bats learn to feed.

The investment that some species make in the construction of tents, and defense
of the same, could be included as paternal care, assuming that the investment that
males make benefits their progeny. In one species where males have been observed
in the act of tent making (Cynopterus sphinx, Balasingh et al., 1995), harem males
defend tents and their female occupants at least during the pregnancy and pup
rearing periods. Twice each year, males of C. sphinx sever and modify stems,
leaves, and vines of selected plant species, forming stem tents (Kunz et al., 1994b:
Balasingh et al., 1995; Bhat and Kunz, 1995). A single male may spend from 30 to
50 days constructing one tent and several additional months defending females
and their pups. Similar types of paternal effort can be expected for other tent-
making species (Kunz et al., 1994b; Kunz and McCracken, 1996; Timm, 1987; Tan
et al., 1998).

Male lactation

Direct parental care in most mammals is the exclusive domain of females
(Clutton-Brock, 1991), although anecdotal evidence of mammary development
and production of milk has been reported for males of some species, including
bats. The first circumstantial evidence that male bats may lactate was suggested by
Dobson (1878), who observed males of Cynopterus brachyotis and C. sphinx with
nipples as large as those of lactating females. Although Dobson gave no evidence
that milk was expressed from the mammary glands of males, he suggested that
males may assist females by nursing young when twins were born (although twins
are rare in the Pteropodidae). This suggestion has not been verified from
behavioral or morphological evidence for these or other species (Ryberg, 1947).
However, mammary hypertrophy and secretion of milk by males (male
galactorrhoea) has been observed in two plant-visiting pteropodids, Dyacopterus
spadiceus in Malaysia (Francis et al., 1994) and Pteropus capistratus in Papau
New Guinea (F. Bonaccorso, personal communication). Females and mature males
of D. spadiceus captured in August at Kuala Lompat, Malaysia each had
functional mammary glands. While 350 ul of milk was expressed from the nipple
of a single adult female, only 4—6 pl of a similar fluid was expressed from males.
The nipples of males were smaller and less keratinized than those of lactating
females, suggesting little or no suckling had occurred (Francis et al., 1994).
Whether lactation in male bats is an  aberrant condition or has functional
significance remains to be clarified.

The environmental conditions and physiological status required to promote
lactation are unknown in male bats. Lactation could be stimulated by alterations in
hormone production (including elevated oestrogen and progesterone), liver
malfunction (which may elevate circulating oestrogen due to the inability of the
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liver to convert testosterone to dihydrotestosterone, an oestrogen precursor), and
conversion of androgen into oestrogen locally within the mammary tissue as occurs
during neonatal hypothalamic masculinization (Francis et al., 1994). Consumption
of plants which contain naturally occurring phytoestrogens, or consumption of
plants contaminated with breakdown products of pesticides (many of which have
oestrogenic properties) are likely alternative hypotheses to account for
spontaneous lactation in males. It is also possible that male lactation in bats is an
evolved condition. Because most mammals are polygynous, one would not expect
lactation to have evolved in species with a polygynous mating system. However,
monogamous relationships, where males and females share in the care of offspring,
could provide the appropriate social conditions necessary for the evolution of
lactation in males.

10.3 SIZE AND DEVELOPMENTAL STATE AT BIRTH

Bats exhibit several reproductive specializations which contrast with those of
similarly-sized terrestrial mammals, including relatively long periods of gestation,
small litters, and large neonatal body masses (Kurta and Kunz, 1987; Hayssen and
Kunz, 1996). These specializations are generally considered adaptations to an
aerial mode of locomotion which, among maminals, is exclusive to bats. Gestation
in bats is relatively long, with the duration between copulation and parturition in
many species extended by at least one of several forms of delay: delayed
implantation, delayed development, and reduced foetal growth (Racey, 1973;
Racey, 1982; Racey and Entwistle, this volume). Bats typically have singleton
litters, but their litter mass is comparable to those of similar-size terrestrial
mammals (Hayssen ef al., 1993; Hayssen and Kunz, 1996; Kurta and Kunz, 1987).

Litter mass among bats is highly correlated with maternal body mass, and this
relationship is allometric, with smaller bats having relatively large offspring and
larger bats having relatively small offspring (Hayssen and Kunz, 1996). Mean litter
to maternal mass is 28.3% for microchiropterans and 17.7% for megachiropterans.
Microchiropterans exhibit a greater range of litter masses relative to maternal mass,
suggesting that litter size is not strictly constrained by maternal body size, as
appears to be the case for megachiropterans where litter mass is more highly
correlated with maternal body mass (Hayssen and Kunz, 1996).

Geometry of wing shape relative to body mass sets an upper limit on the mass that
a bat can effectively carry in flight, whether the additional mass is imposed by a
stomach full of food and/or a developing foetus. Bats that have lower intrinsic wing
loadings should be better able to carry greater mass relative to those with higher
wing loadings (Norberg and Fenton, 1988; Norberg and Rayner, 1987). A full-term
foetus can impose increases in wing loading up to 44% over non-gravid conditions
(Funakoshi and Uchida, 1981; Hoying and Kunz, 1998), and thus would be expected
to increase the power required to sustain flight (Hayssen and Kunz, 1996).

Wing loading among the Microchiroptera is highly variable, which may reflect
their diverse dietary habits and foraging strategies (Hayssen and Kunz, 1996). The
highest wing loading can be found among the molossids and phyllostomids.
Members of these families have wing loadings that are similar to those predicted
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by dimensional analysis, and thus may function near the physical limits of
dimensional scaling (Hayssen and Kunz, 1996). Vespertilionids and rhinolophids
have the lowest wing loading values relative to body mass, allowing these groups
to carry the same proportions of their body mass as molossids and phyllostomids
at lower energetic cost (Hayssen and Kunz, 1996). Thus, low intrinsic wing
loadings among the vespertilionids may be a key factor in promoting the evolution
of litter sizes greater than one.

Large size of bats at birth is generally associated with an advanced stage of
development; yet this is true for only a handful of characteristics. Large size of
neonates may support an advanced state of neuromuscular development at birth
(Kurta and Kunz, 1987), as is evident by well-developed hind limbs, allowing pups
to cling tenaciously to their mothers or the roost substrate. Despite their relatively
large neonatal size, newborn bats are functionally altricial, based largely on the
sparsity of their pelage, inability to thermoregulate (Fujita, 1986), and nutritional
dependence on their mothers (Kurta and Kunz, 1987). Lactational requirements of
females may be reduced if the gestational period is prolonged and young are born
at an advanced size (Kurta and Kunz, 1987). This pattern appears to hold true only
for members of the family Vespertilionidae, which have large young and a
relatively short lactation period. By contrast, rhinolophids produce large neonates
and nurse their young for extended periods (Hayssen and Kunz, 1996).

10.4 POSTNATAL GROWTH

Postnatal growth is an important life-history trait in mammals (Case, 1978;
Ricklefs, 1979) because it reflects a major component of parental effort (Oftedal,
1984; Kirkwood, 1985; Costa ef al., 1986; Gittleman and Oftedal, 1987; Oftedal and
Gittleman, 1988; McLaren, 1993; Kunz and Stern, 1995). Published analyses of
postnatal growth and life-history variation in mammals have grossly
underrepresented bats (e.g., Wootton, 1987; Harvey and Read, 1988; Read and
Harvey, 1989; Promislow and Harvey, 1990) or excluded them entirely (e.g., Millar,
1981; Western and Ssemakula, 1982; Martin, 1984; Martin and McLarnon, 1985).
Despite the relatively recent allometric analyses of postnatal growth in bats (Kunz
and Stern, 1995), little attention has been given to factors influencing individual
variation, and few studies have considered proximate and evolutionary forces that
may shape patterns of postnatal growth in the Chiroptera.

In Case’s (1978) allometric analysis of postnatal growth in terrestrial
vertebrates, he included only 17 species representing two families of bats. His
analysis was limited because only the early period of linear growth was
examined and the effects of body size were not removed from his analysis.
Postnatal growth data on bats available at the time of Case’s analysis (see Orr,
1970) were strongly biased toward small insectivorous species (<30g as adults),
and most of the taxa represented were members of a single family
(Vespertilionidae). Case (1978) found from his analysis that bats had intermediate
growth rates, although he offered no explanation for this conclusion. Tuttle and
Stevenson (1982) summarized data on postnatal growth for 24 taxa, but included
species on which both longitudinal and cross-sectional methods of data
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collection were used (see below). The allometric analysis of Kunz and Stern
(1995) included 33 taxa, representing seven families, and found that proximate
factors known to influence postnatal growth rates include food supply, climate,
habitat, maternal factors, and social environment. Here, we summarize
interspecific and intraspecific patterns of postnatal growth in the Chiroptera by
presenting empirical data, results derived from the logistic growth model, and an
evaluation of both maternal and environmental factors judged to be important
selective forces which may influence these patterns.

10.4.1 Growth Models and Analytical Considerations

Data on length of forearm, body mass at birth, age at weaning, and rates of postnatal
growth derived from the logistic growth model are summarized in Table 10.5.
Growth parameters for length of forearm and body mass were derived from the
Marquardt-Levenberg algorithm (Marquardt, 1963). We used the logistic model
because our previous findings (Kunz and Stern, 1995; Kunz and Robson, 1995;
Stern and Kunz, 1998) showed that this model provides a better fit to empirical
data than either the von Bertalanffy or Gompertz models (but see Hughes et al.,
1995). Kunz and Stern (1995) analysed growth data on body mass because this
variable is more sensitive to environmental variation than length of forearm (see
Hoying and Kunz, 1998).

Empirical methods for quantifying postnatal growth in bats are equally
appropriate for free-ranging and captive populations (Kunz, 1987). Ideally, studies
on postnatal growth should be based on the recapture and measurements of
known-age, marked individuals. In field situations, successful recaptures of pups
will vary depending on size of the colony, fidelity of mothers and their pups to the
roost site, and relative access that investigators have to mothers and pups (Kunz,
1987). In captive situations, care must be taken to ensure that feeding schedules
provide adequate nutrition, appropriate roosting environments, and adequate
space to allow bats to exercise (McLean, 1995).

Linear models, using least square regression for quantifying rates of change in
length of forearm, body mass, and cartilaginous epiphyseal gaps can be used
effectively to describe rates of change during different phases of the postnatal
period (Kunz and Anthony, 1982; Burnett and Kunz, 1982; Cosson et al., 1993;
Kunz and Robson, 1995; Stern and Kunz, 1998). Equations derived from these
analyses also can be valuable for assigning ages to bats during the postnatal period
{Anthony, 1988) and stages of lactation to mothers when mother—pup pairs can be
captured (Kunz et al., 1995a).

Postnatal growth rates derived from measurements of pups captured on different
dates (cross-sectional or grab samples) usually yield highly biased results as
compared to mark-recapture data (longitudinal samples). As the growth period
progresses, the capture of smaller and younger pups is often easier and, as a
consequence, the empirical growth curves based on these data have lower slopes
than those based on recaptured individuals. Baptista et al. (in press) quantified
growth rates in free-ranging little brown bats (Myotis lucifugus) to compare
longitudinal (mark-recapture} with cross-sectional samples. They found that cross-
sectional samples significantly underestimated growth rates for length of forearm,
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body mass, and length of epiphyseal gaps. Growth rates derived from cross-
sectional samples underestimated length of forearm and body mass by 40% and
30%, respectively. In a study where cross-sectional sampling was used, corrections
based on growth rates of known-age individuals were needed to compensate for
potential biases (see Tuttle, 1975). Because no independent comparisons are
available to validate this and other growth curves where cross-sectional samples
were used (Dwyer, 1963; Pagels and Jones, 1974; Short, 1961; Thomas and
Marshall, 1984), no further considerations are given to these studies in the present
chapter.

Postnatal growth rates of some species reared in captivity may differ from those
derived from free-ranging populations. For example, captive Antrozous pallidus and
Pipistrellus pipistrellus grew faster than individuals of the same species in free-
ranging populations (Kunz, 1987), and similar differences were reported for
Epomophorus wahlbergi (Sowler, 1983). Although differences in roost environment
and social conditions invariably exist between captive and free-ranging colonies,
contrasting planes of nutrition may account for most of the reported differences in
postnatal growth patterns. In several previous studies where bats have been reared
in captivity, individuals were fed questionable diets and were seldom, if ever, given
an opportunity to fly. Free-ranging bats also may experience depressed growth rates
owing to fluctuating and sometimes unpredictable environmental conditions that
reduce the availability of food to mothers and/or depress metabolic rates of pups
and mothers (Hoying and Kunz, 1998).

10.4.2 Interspecific Variation

Among the species of bats compared allometrically by Kunz and Stern (1995), a
significant negative correlation was found between postnatal growth rates and
body mass (Figure 10.2). No significant phylogenetic effect (Megachiroptera v.
Microchiroptera) on postnatal growth was found after removing the effect of body
mass. The absence of a significant phylogenetic effect was not surprising, given the
small sample of megachiropterans (n = 5) available for analysis. After removing the
effects of body mass, latitude (temperate v. tropical) was the only extrinsic variable
that significantly affected postnatal growth rate, suggesting that temperate zone
bats have higher growth rates than their tropical counterparts (Figure 10.3A). A
significant negative allometric relationship was found separately for insectivorous
bats, as species from temperate regions showed higher growth rates than those from
tropical regions (Figure 10.3B). When tropical species were examined alone, no
significant relationship between asymptotic body mass and postnatal growth was
observed, perhaps because of small sample size.

Postnatal growth rates in frugivorous species were more associated with
asymptotic mass than insectivorous species (Figure 10.4). This latter observation
supports the hypothesis that postnatal growth rates in tropical frugivorous species
may be influenced by a relatively constant diet, whereas insectivorous bats may
more likely experience greater variation in food quality and quantity and, thus,
exhibit more variation in growth rates. No effects of whole animal basal metabolic
rate or mass-specific metabolic rate on postnatal growth rates of bats were found
(Kunz and Stern, 1995).
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Figure 10.2 Allometric relationship between postnatal growth rates and asymptotic body mass in
the Chiroptera (after Kunz and Stern, 1995).
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Figure 10.3 A. Allometric relationships between postnatal growth rates and asymptotic body
mass in temperate (@) versus tropical zone (A) bats (F = 9.63, P = 0.004). B. Allometric relationship
between postnatal growth rates and asymptotic body mass for temperate (®) and tropical (A)
insectivorous bats (F = 4.72, P = 0.042) (after Kunz and Stern, 1995).

Postnatal growth rates of bats from tropical regions were among the lowest
among the Chiroptera (Kunz and Stern, 1995), and the vampire bat, Desmodus
rotundus, is a conspicuous further outlier. This species has the lowest growth rate
among all bats that were examined by Kunz and Stern (1995). Whether this
exceptionally slow growth rate reflects dietary constraints imposed by an exclusive
blood meal, social conditions, or other factors invites further study.

The analysis by Kunz and Stern (1995) suggests a strong selection pressure for
rapid growth rates in temperate climates. One hypothesis to account for these
higher growth rates of bats in temperate, as opposed to tropical latitudes, may be
explained by selection pressures in response to a shorter growing season. Faster
growth rates in temperate latitudes would allow individuals to achieve maximum
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Figure 10.4 Allometric relationship between postnatal growth rates and asymptotic body mass in
insectivorous (4A), frugivorous (®), sanguivorous (W) bats. After removing the effect of asymptotic
body mass, there was no significant effect of diet (insects v. fruit) on postnatal growth (F = 1.23,
P = 0.289) (after Kunz and Stern, 1995).

somatic growth and to deposit important fat reserves before the onset of winter
hibernation or migration (Kunz and Stern, 1995; Hoying and Kunz, 1998). This
interpretation is consistent with Boyce’s (1979) hypothesis that accelerated growth
should be found among mammals living in highly seasonal environments, a
characteristic of temperate regions. In this context, it would be interesting to
compare postnatal growth rates of tropical species known to occur over a range of
different altitudes.

10.4.3 Intraspecific Variation

When data on intraspecific variation in postnatal growth rates are examined, both
quantitative and qualitative differences can be seen. Here we evaluate
environmental and biotic factors known or suspected to affect intraspecific
variation in postnatal growth rates in bats, including food supply and climate,
latitude, diet, gender, litter size, colony size, season, and growth conditions
(captive v. free-ranging). Because many of these factors are interdependent, we also
consider possible interactions in an effort to interpret observed patterns of
postnatal growth.

Local climate and food supply

Case (1978) postulated that feeding requirements of young mammals and
availability of food to their parents were sufficient to account for much of the
variability observed in postnatal growth rates. Growth rates of young animals
should be higher if parents are subjected to higher planes of nutrition, either
through natural abundance of food or through nutritional enrichment in captivity.
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In free-ranging bats, meteorological conditions directly affect both food abundance
and quality as well as the behavioral and physiological condition of mothers and
pups. The activity of flying insects may be reduced or altered by wind, moonlight,
low temperature, and precipitation (Anthony and Kunz, 1977; Anthony et al.,
1981; Richards, 1989; Rydell, 1989; Jones et al., 1995; Hoying and Kunz, 1998).

Field observations suggest that food available to lactating females is an important
factor explaining growth rates in bats. In their study of postnatal growth in
Pipistrellus subflavus in eastern Massachusetts, Hoying and Kunz (1998) found
significant inter-year variation in postnatal growth rates (Figure 10.5). They
attributed this difference, in part, to the contrasting abundance of insects during
the two years of study. Postnatal growth in body mass was slower in 1982 than in
1981. Births were delayed by nearly one week in 1982 and pups that were born
during this inclement period experienced depressed growth. Not only were fewer
flying insects available to lactating mothers, but unseasonably cool temperatures
caused daily torpor in lactating females and their pups, thus contributing to the
depressed postnatal growth rates. When ambient temperatures and levels of
precipitation returned to normal conditions in subsequent days, the pups
experienced compensatory growth (Hoying and Kunz, 1998).

Latitude and regional climate

Theoretically, populations of the same species at higher latitudes should grow
faster than populations at lower latitudes, thus ensuring that individuals at higher
latitudes complete somatic growth and fat deposition before the onset of migration
and hibernation (Fujita, 1986). Fujita found that postnatal growth rates (body mass
and length of forearm) from a population of Myotis lucifugus in Alberta, Canada
(54°56'N) were lower than those in New Hampshire (42°25'N). Although the
general trend of higher growth rates in temperate v. tropical bats may hold in an

1981 (normal)

4+ 1982 (wet and cool)

Body Mass (g)

Pipistrellus subflavus

1 1 1 ] i
0 10 20 30 40 50
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Figure 10.5 Effects of insect availability on postnatal growth rates in Pipistrellus subflavus in two
different years (1981 and 1982). Bats increased in body mass at a significantly greater rate in 1981
than in 1982 (F = 32.3,P <0.001).The year 1981 was characterized by normal seasonal temperature
and precipitation, whereas 1982 experienced above normal precipitation and low ambient
temperature (after Hoying and Kunz, 1998).
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allometric analysis of different species (Kunz and Stern, 1995}, Fujita’s observation
suggests that growth rate in the most northern part of a species’ range may actually
be lower, as influenced by energetic considerations (reduced availability of food
and increased costs of thermoregulation). Cooler summer temperatures at
northernmost latitudes may also directly affect availability of insects and the
female’s ability to convert energy and nutrients into milk.

If maintenance costs are higher for mothers and pups at colder, more northerly
temperate latitudes, then less energy would be available for reproduction. For
species with a geographic distribution that extends from intermediate into cool
temperate latitudes, postnatal growth rates may indeed be lower at the highest
latitudes. Thus, for species with geographic distributions that span from low to
high latitudes (e.g., Eptesicus fuscus), we would predict a hyperbolic curve for
growth rates, with the lowest rates occurring at the extremes and the highest rates
at intermediate latitudes. Reduced postnatal growth rates, low fat deposition, and
lower levels of fecundity at the northernmost latitudes of a species’ range in the
northern hemisphere (Kunz et al., 1998b) may characterize a suite of life-history
traits that limits its breeding distribution.

Season

In tropical environments, female bats that produce two or more litters per year may
experience marked differences in the availability of food and water at different
times of year, which in turn may influence nutrient and energy transfer from
mothers to pups. McWilliam (1987) showed that early postnatal growth rates in
Coleura afra were higher during the short rainy season in Africa than during the
long rainy season which followed an extended dry period. He attributed this
difference to the poor condition of females following a pregnancy when food
resources were low. In India, qualitative differences in postnatal growth rates were
observed between spring and summer litters of Cynopterus sphinx (Krishna and
Dominic, 1983), further suggesting that growth rates may vary seasonally,
especially in polyoestrous species.

Gender

Gender-specific differences in postnatal growth rates should be most pronounced
in sexually dimorphic species. Several species of insectivorous bats are weakly
sexually dimorphic, with females being slightly larger than males (Myers, 1978;
Williams and Findley, 1979), but overall differences in postnatal growth rates
appear to be correspondingly slight or nomexistent (Kunz, 1973; Kunz and
Anthony, 1982; Burnett and Kunz, 1982; but see Kunz, 1974). Notwithstanding,
some tropical frugivorus species (e.g., Ariibeus jamaicensis, Pteropus
hypomelanus, Hypsignathus monstrosus, and Epomophorus wahlbergi) and one
omnivorous species (Phyllostomus hastatus) show significant sexual dimorphism
in adults; this may be a consequence of gender-specific differences in postnatal
growth rates (Kunz and Stern, 1995). In P, hastatus, where reproductive variance is
much greater for males, and where body size may affect reproductive success
(Stern and Kunz, 1998), mothers should invest more in their sons than in their
daughters (see Trivers and Willard, 1973). Such differential allocation of maternal
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Figure 10.6 Effects of gender on postnatal growth in body mass in Phyllostomus hastatus. Males
grew at a significantly greater rate (t = 4.39, P <0.001) than did females from the same population
in the same year (from Stern and Kunz, 1998).

resources to male pups often results in a high degree of sexual dimorphism in
polygynous species (Figure 10.6 and Bradbury, 1977b), suggesting that postnatal
growth rates are greater or growth continues longer in males than in females.

Litter size

Most bats produce singletons, although a few species produce litters of two or more
(Tuttle and Stevenson, 1982; Kurta and Kunz, 1987; Hayssen and Kunz, 1996).
Species in which twinning occurs can provide valuable data for comparing the
effects of litter size on postnatal growth rates. Among North American bats which
have litter sizes greater than one, postnatal growth rates have been quantified for
Antrozous pallidus, Pipistrellus subflavus, and Eptesicus fuscus. Populations of E.
fuscus in the western USA typically produce litter sizes of one, whereas those in
the east typically produce twins (Burnett, 1983; Holroyd, 1993).

Comparisons of postnatal growth rates between populations from different
geographic regions may be confounded by differences in climate, food availability,
or both (see below). To avoid such geographic or other confounding effects on
postnatal growth, ideally singletons and twins should be sampled from the same
population. Bassett (1984) compared growth rates for length of forearm in singletons
and twins of A. pallidus collected from the same population in California. In his
captive study, pups from both groups grew at the same rate, although singleton pups
were larger at birth than those from litters with twins. However, because body mass
is more sensitive to environmental effects during the postnatal period than is length
of forearm (Hoying and Kunz, 1998), conclusions based on a comparison of length
of forearm between singletons and twins may be less revealing than those based on
body mass. Holroyd (1993) compared growth rates of twins versus singletons from
a free-ranging population of E. fuscus in Alberta, Canada, and found that both length
of forearm and body mass of twin pups grew significantly more slowly than the
length of forearm and body mass of singleton pups.

it
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Roost temperature and colony size

Conditions in the roosting environment of bats (Kunz, 1982) potentially have
important direct and indirect effects on intraspecific variation in postnatal growth
rates (Tuttle and Stevenson, 1982). Tuitle {1975) compared pre-weaning growth
rates in Mpyotis grisescens from several caves, each with contrasting roost
temperatures, and found that postnatal growth rates of pups were highest in the
warmest roosts. Tuttle postulated that females and pups from cooler caves
allocated more energy to maintenance, and thus less energy was available for
production (milk output by females and accretionary growth of pups). He also
suggested that roost temperature was directly proportional to colony size, because
large numbers of bats generated more heat and could more effectively increase the
roost temperature of the cave (and thus reduce maintenance costs). Post-weaning
growth in M. grisescens may also be influenced by colony size (Tuttle, 1976), as
individuals from large colonies are expected to fly greater distances to feed than
bats from small colonies. Tuttle argued that pups from large colonies allocated a
greater amount of energy to nightly foraging flights, as pups from these colonies
experienced slower post-weaning growth rates. These results suggest that
interactions between roost location (relative to suitable foraging habitats, colony
size and microclimate) should be considered when evaluating postnatal growth
rates in bats,

10.4.4 Ontogeny of Flight, Echolocation and Feeding Behavior

Two important benchmarks for successful postnatal growth and development in
bats are the attainment of flight and independence from parental care. Early
postnatal development of the neuromuscular system of bats and other animals
establishes the crucial circuitry for specialized tasks such as flight, navigation, and
feeding skills (Powers et al., 1991; Stern et al., 1997). For Microchiroptera,
development of echolocation is essential for feeding success, survival, and
reproduction. Early development of vocal and auditory systems in bats appears to
be important for the development of echolocation and social calls used to capture
prey and to locate and identify mates and offspring (McCracken and Gustin, 1991;
Moss et al., 1997).

The extent to which either or both parents assume roles in the development of
communication and echolocation skills in bats has not been thoroughly
investigated. For most species, only a maternal influence is expected, because adult
sexes of many species are segregated during the maternity period. Young bats of
some species may accompany their mothers on foraging flights. They include
Noctilio albiventris (Brown et al., 1983), Eptesicus fuscus (Brigham and Brigham,
1989), and Desmodus rotundus (Wilkinson, 1985, 1987). Other species, such as
Mpyotis myotis (Audet, 1990), M. Iucifugus (Buchler, 1980; Kunz and Anthony,
1996; Adams, 1996), Pipistrellus pipistrellus (Racey and Swift, 1985), and
Rhinolophus ferrumequinum (Jones et al., 1995) appear to develop foraging skills
independent of their mothers. Thus, what role mothers may assume in the
development of echolocation and early foraging success of their pups will require
long-term studies where both mother and pups are followed simultaneously.

o
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In monogamous species and in polygynous species that form harems, and in
species where the putative father is present during the developmental period of
pups, paternal influence on the development of vocalizations (including
echolocation) and early flight and foraging can be expected. In the monogamous
megadermatid, Lavia frons, males and females typically roost near one another and
hunt from perches as sit-and-wait predators (Vaughan and Vaughan, 1987). Within
a week of making their first foraging flights, pups practice wing flapping as they
cling to their mothers. Pups may accompany either parent to a shared feeding
territory, and may also use their parent’s foraging perches. Similar observations
have been reported for Cardioderma cor, where mother-pup contact is maintained
by calls produced by the mothers at foraging sites (Vaughan, 1976).

10.5 CONCLUSIONS, PREDICTIONS AND FUTURE DIRECTIONS

Future studies on parental care and postnatal growth in bats should focus attention
on frugivorous, nectarivorous, sanguivorous, and carnivorous species. Most
published studies on mother—pup recognition have focused on temperate
insectivorous species, thus research on tropical species with other dietary habits is
warranted. Although the role of acoustic communication in mother-pup reunions
has received considerable attention, the role of spatial memory, olfactory, and
visual cues have largely been ignored. These modes of communication are likely to
play an equally important role in the identification of kin. The role of tactile
stimuli, especially associated with allogrooming in pup recognition, has not been
investigated.

Analysis of milk composition has been reported for relatively few species of bats.
Future studies should focus on milk composition of nectarivorous, frugivorous and
carnivorous species, and include analysis at different stages of lactation along with
estimates of milk yield. Comparisons of milk composition and milk energy output
from different species and different life histories will ultimately make it possible
to evaluate the relationship between milk yield and growth rates in bats. Among
species represented by different feeding guilds, we would expect maternal effort
and postnatal growth rates to be greatest in insectivorous and carnivorous species,
intermediate for frugivorous species, and least for nectarivorous species. Why the
postnatal growth rate of a sanguivorous species is so low relative to other species
invites further study.

Future studies on postnatal growth rates should be designed to integrate data on
local climate, food availability, maternal diet, milk composition, milk energy yield,
and non-energetic parental effort. Studies should be designed to compare parental
effort and postnatal growth in species from different geographic areas, different
colony sizes, and seasons. We would expect postnatal growth rates in populations
that occur in highly seasonal, temperate environments to exhibit higher growth
rates than those from subtropical and tropical environments, except that growth in
extreme latitudes may be reduced. In tropical environments, where food resources
are often highly variable in time and space (including flowers, fruits, and insects),
we would expect to find seasonal differences in growth rates in those species
which produce two or more litters per year.
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Relationships between pup growth, colony size and the thermal environment of
roosts, and the development of thermoregulatory capacity of young, should be
thoroughly investigated. We would expect higher growth rates in individuals that
roost in the warmest environments and maintain elevated body temperatures
during the postnatal period. Parental effort and growth rates in bats should be
sensitive to environmental conditions, especially if the habitat is degraded (which
may increase foraging time and reduce energy transfer to pups), sizes of maternity
colonies are reduced {with a decrease in thermal advantages that may accrue from
warm roosts), and there are changes in the abundance and availability of food
resources (seasonal and inter-year variation in insect, fruit, and nectar production).
Finally, studies on parental care in bats should be extended to investigate how
parental effort is adjusted to variation in benefits to offspring and costs to the
parents as reflected in the fitness of individuals.
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